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The swimming of a micro-organism by flagellar propulsion is examined. The organism 
consists of a spherical cell body (radius A )  propelled by waves travelling down a long 
slender flagellum (radius a, length L).  Slender-body theory for Stokes flow is used to 
replace the flagellum with distributions of Stokeslets and dipoles along its centre-line. 
The cell body is represented by a Stokeslet, dipole andrrotlet for translation and 
rotation, and by an image system to cancel the velocity induced by the singularities 
along the flagellum. The error in the slender-body theory is O(a/L), while the images 
cancel the velocity on the surface of the sphere exactly. With these approximations, 
the boundary-value problem for the Stokes equations is transformed into a system of 
singular integral equations. The unknowns are the velocity and angular velocity of the 
organism and the force distribution along the flagellum. An iteration procedure is used 
to  solve the equations numerically. 

Numerical results are presented for planar sinusoidal waves (amplitude a, wave- 
number k). The average swimming speed and power consumption are computed for a 
wide range of the parameters. The optimal sine wave for minimizing power consumption 
is found to  be a single wave with amplitude ak z 1 .  The power consumption is found 
to be relatively insensitive to changes in the flagellar radius. The optimal flagellar 
length is found to be in the range L / A  = 20-40. The instantaneous force distribution 
and flow field for a typical organism are presented. The trajectory of the organism 
through one cycle shows that a wave of constant amplitude may have the appearance 
of increasing amplitude owing to the yawing motion of the organism. 

The results are compared with those obtained using resistance coefficients. For 
organisms with small cell bodies (AIL = 0-05), the average swimming speed predicted 
by Gray-Hancock coefficients is accurate to within 10%. For large cell bodies 
(AIL = O - Z ) ,  the error in swimming speed is approximately 20 %. The relative error 
in the predicted power consumption is 25-50%. For the coeficients suggested by 
Lighthill, the power is consistently underestimated. The Gray-Hancock coefficients 
underestimate the power for small cell bodies and overestimate it for large cell bodies. 

1. Introduction 
The propulsion of micro-organisms by flagellar motions is a subject with considerable 

interest for fluid dynamicists. The study was initiated by Taylor (1952), whose analysis 
gave order-of-magnitude results. Hancock (1 953) presented a sophisticated model of 
the flagellum using line distributions of Stokeslets and potential dipoles; however, he 
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was able to calculate only a few special cases owing to the complexity of the calcula- 
tions. Gray & Hancock (1955) adopted a simpler model based on resistance coefficients 
taken from Hancock’s (1953) asymptotic results. With this model, they examined the 
swimming of sea-urchin spermatozoa and found good agreement between the calcu- 
lated and observed swimming speed. After this success, the resistance-coefficient model 
was adopted by all workers in the field. Brokaw (1965) used this technique to examine 
the locomotion of several organisms employing wave motions more general than the 
sinusoidal waves considered up to that point. Chwang & Wu (1971) considered helical 
waves and introduced the concept of moment coefficients to account for the moment 
generated along the flagellum. Silvester & Holwill (1972) studied a variety of bio- 
logical wave forms, including very large amplitude waves which had not been studied 
previously. Coakley & Holwill ( I  972) considered a number of general three-dimensional 
waves, including asymmetric waves. 

While the resistance-coefficient model was being applied to a variety of organisms, 
other researchers were examining the validity of the approach. Batchelor (1970), COX 
(1970) and others refined slender-body theory through the use of perturbation methods. 
They gave more general results and improved values for the resistance coefficients. The 
weakness of their method is that  it depends on an expansion in powers of In E ,  where E is 
the slenderness ratio. This series requires several terms for reasonable accuracy, making 
it awkward to use with the complicated geometry of flagellar motions. Lighthill (1976) 
suggested a different formulation of slender-body theory making it convenient to find 
solutions Ole). He suggested values for the resistance coefficients different from those 
of Gray & Hancock and in a certain sense ‘optimal ’. Johnson (1 977) has developed a 
model of flagellar propulsion similar to that suggested by Lighthill. 

I n  previous studies of micro-organism swimming, much attention has been given to 
the representation of the flagellum, but relatively little to that of the cell body. At best, 
the cell body has been modelled as a simple Stokeslet, dipole and rotlet with the 
strengths of these singularities given by Stokes’ drag formula of Faxen’s law. Although 
Faxen’s law (see Happel & Brenner 1965) gives an accurate value for the force and 
moment on the sphere, the simple singularities do not accurately represent the flow 
field. Thus the Stokeslet distribution in the vicinity of the sphere may differ greatly 
from its actual value. The solution to this difficulty is to employ the image system for 
a Stokeslet in the presence of a sphere. This technique was used by de Mestre & Katz 
(1974) to assess the effect of the cell body on the flow around the flagellum; however, 
they restricted their model to the axisymmetric flow about a rigid organism moving 
along a line parallel to its straight flagellum. To assess properly the effect of the cell 
body, it is necessary to employ the complete image system as given by Oseen (1927). 

I n  this paper, we consider organisms which are propelled by planar waves propa- 
gating down a long slender flagellum. The organism consists of a single flagellum of 
radius a and length L attached radially to  a spherical cell body of radius A .  The 
organisms to which this model apply are in the range L = 10-103pm and a = 0.1- 
0-5pm. I n  the case where the cell body is absent, the model applies to a variety of 
swimming worms with L = lO3pm and a = 10 pm. The flow is governed by Stokes’ 
equations with the Reynolds number in the range 10-3-10-3. We assume that  a < L 
and a < A .  

To find a solution to the equations, we employ distributions of the fundamental 
singularity and its derivatives. This reduces the problem to satisfying the no-slip 
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condition on the surface of the organism. Slender-body theory allows us to satisfy the 
boundary condition on the flagellum by a distribution of Stokeslets and dipoles along 
its centre-line. The error is of order a / L  if the flagellum is straight, or of order aK if it has 
curvature K .  The boundary condition on the sphere is satisfied by two sets of singu- 
larities. The first set consists of image singularities which cancel the velocity on the 
sphere induced by the Stokeslets along the flagellum. The second set is composed of the 
Stokeslet, dipole and rotlet which match the velocity due to the translation and rotation 
of the sphere. This set of singularities is sufficient to satisfy the boundary conditions to 
order a / L  over the entire surface of the organism. 

The introduction of flow singularities transforms the no-slip boundary condition 
into a system of singular integral equations for the singularity distributions. These 
equations are too difficult to solve analytically, and the singular kernel makes it 
impossible to use a direct numerical solution. To circumvent this difficulty, a mixed 
analytical-numerical approach is used. The kernel is evaluated analytically over short 
intervals and the results are used to set up a system of linear algebraic equations. The 
diagonal of the matrix is dominant, facilitating an iterative solution. 

2. Image system 
The fundamental singularity of Stokes flow is called a Stokeslet and is defined by 

where r = Ix - XI. The velocity at x due to a Stokeslet of strength f a t  X is 

Uj(X) = &(X, X)fk/8V (2) 

Physically, this represents the velocity field of a point force f in an unbounded Auid. 
Mathematically, the Stokeslet is the free-space Green’s function for Stokes’ equations. 
From the theory of Green’s functions, we conclude that the flow about a collection of 
finite bodies may be represented by distributions of Stokeslets and their normal 
derivatives over the body surfaces. As the Stokes equations are linear, derivatives of the 
Stokeslet to any order are also solutions of the equations. The first derivative is called 
a Stokes-doublet, the second a Stokes-quadrupole, etc. Thus, using this terminology, 
we state that the flow may be represented by distributions of Stokeslets and Stokes- 
doublets on the body surfaces. An important special case is a system of rigid bodies 
fixed with respect to each other, in which case the flow may be represented by distribu- 
tions of Stokeslets only. 

I n  principle, the Green’s function approach provides a method for solving any 
problem in Stokes flow; however, in practice the difficulty in finding the required 
surface distributions is insurmountable. I n  some cases with special geometry, i t  is 
possible to circumvent this difficulty by employing the Green’s function applicable to  
that geometry. This Green’s function will consist of the Stokeslet plus a collection of 
image singularities which serve to cancel the velocity of the Stokeslet on the boundaries. 
The Green’s function satisfies the no-slip condition on these boundaries implicitly, 
thus dispensing with singularity distributions on the surfaces considered. 

Thus, in the present problem there are two ways to model the spherical cell body. 
The first is t o  consider a distribution of Stokeslets over its surface and solve the integral 
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equation arising from the boundary condition, This greatly complicates the solution 
of the problem because of the difficulty of solving an integral equation in two inde- 
pendent variables. The second method is to use the Green's function for the flow 
external to a sphere. This satisfies the boundary condition implicitly and does not 
introduce any new unknowns. 

Oseen (1927, p. 108) gives the Green's function for the flow external to a sphere 
located at the origin as 

with 

and r* = Ix - X*l. Therefore the velocity due to a Stokeslet of strength f at the point X 
in the presence of the sphere is 

uj(x) = Gjk(x, X)fk/8np. ( 6 )  

The expression for Gjk  is quite complicated, but can be more easily understood if we 
examine its components. The first two terms are easily recognized as the Stokeslet (1) .  
The remaining terms are the images inside the sphere. For the radial component of the 
Stokeslet, these can be resolved into a Stokeslet, dipole and stresslet at  the inverse 
point X*. For the transverse component, they represent a line distribution of Stoke- 
lets, dipoles and Stokes-doublets extending from the origin to the inverse point. 

The total Stokeslet and rotlet strengths are important as they give the force and 
moment on the sphere. (A rotlet is an antisymmetric Stokes-doublet and represents 
a point torque.) The force and moment for the radial component are 
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while those for the transverse component are 

As stated previously, these are in agreement with the result obtained from FaxBn’s law. 

3. Slender-body theory 
I n  the preceding section, we noted that the boundary condition on the organism 

could be satisfied by employing surface distributions of singularities. In  this section, 
we shall show that the singularities on the surface of the flagellum can be replaced by 
distributions of singularities along its centre-line. This simplification is achieved 
through the use of slender-body theory for Stokes flow. This subject has been exten- 
sively developed in other sources (Batchelor 1970, etc.) and will not be discussed in any 
detail here. It will be sufficient to show that the line distributions satisfy the boundary 
conditions to the desired accuracy. 

To satisfy the no-slip condition on the surface of the flagellum, we require that the 
induced velocity should match the velocity of the flagellum with respect to the fluid. 
At any point along the flagellum, this velocity may be viewed as that due to the 
translation and rotation of the cross-section at that position. We find that the trans- 
lational velocity can be matched by Stokeslets and dipoles, while the rotational 
velocity can be matched by rotlets. We shall see that the rotational velocity is negli- 
gible for the organisms considered here. Thus the flagellum can be represented by 
Stokeslets and dipoles. 

To show that Stokeslets and dipoles can match the translational velocity a t  each 
cross-section, we need to  show that the induced velocity is approximately constant 
around the cross-section. From this, we infer that  when the boundary condition is 
satisfied a t  all points on the centre-line i t  is satisfied a t  all points on the surface. 

The dipole is defined by 

and the velocity field due to a dipole of strength d is 

uf(x) = ( d k / 4 m )  B j k ( X ,  x )*  
I n  applying slender-body theory, we find that the dipole strength is determined by 
the Stokeslet strength and is given by 

d = ( -a2/4,u)f,, (11) 

where fi is the component off in the plane perpendicular to the centre-line and a is the 
radius of the flagellum. 

To find the velocity induced by these singularities, we consider a small section of the 
flagellum of length 26s. Choose a local co-ordinate system ( X L ,  YL, Z L )  with the origin 
at the centre of the interval and the X L  axis tangential to  the centre-line. With this 
choice of axes, the velocity a t  the point xL due to the singularities in the interval is 
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We now assume f L  to be constant over this short interval and integrate to obtain 

uj”(xL) = fk[KjLk(XL - X~)$:{?g;:;*,, 

where the K& are given by 

113) 

1 2 - 2  

8np r ’ 
K& = -- (14a-c) 

x - x  1 y-Y 1, K& = -- 
8n-,u r ’ 2In[r-(x-X)]+- 

r 
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1 (y-Y)(z-Z) (2-X) la2 ( X - X ) 3  -- 

where 

all in local co-ordinates. 
To see that the velocity is approximately constant around the cross-section, we 

consider a point on the surface specified by xL = (O,acos8, asin8) and let 6s = q,  
where a < q < L. We substitute the expressions (14) €or the K& into (13) to find the 
velocity a t  this point. We note that the off-diagonal elements KjLk have zero contribu- 
tion, as the point chosen is at the centre of the interval of integration. Thus we find that 
to order a2/q2 the velocity of a point on the surface is 

p2 = (y- Y)2+ ( z - 2 ) 2 ,  

We note that this expression is independent of 8, and hence that the velocity is 
constant around the cross-section. 

This analysis shows that the variation in uL around the cross-section due to singu- 
larities within a distance q is O(a2/q2). On the other hand, the definition ( 1 )  of the 
Stokeslet ensures that the variation due to singularities further distant than q is also 
O(a2/q2). This presentation of slender-body theory is essentially similar to the discus- 
sion given by Lighthill (1976, pp. 194-196). In the same paper, he demonstrates that 
the errors due to centre-line curvature and variation in fL in the above expression (15) 
are O(KU) and O(&) respectively. Here K is the curvature and 5 is (f L)-l  dfL/dXL. 

The analysis above is valid far from the ends of the flagellum. Tuck (1964) con- 
sidered the effects of blunt ends. Although the error in fL at  the end may be of order 
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unity, the integrated effect on the rest of the body is at worst O(a/L) .  This result holds 
a t  the free end, but at the end attached to the cell body, we must consider the effect of 
the images. 

We wish to  show that the velocity induced by the image singularities does not vary 
around the cross-section of the flagellum. Since the images are confined within the 
sphere, we need consider only the length of the flagellum within a distance q of 
the surface. The flagellum is attached to the sphere radially, hence the Stokeslets 
near the surface of the sphere (1x1 < A + q )  are at points ( A  + E ,  0,O). To first order, the 
images of these singularities are Stokeslets of the same magnitude, but opposite 
sign, a t  the points ( A  - E , O ,  0). As the Stokeslets and their images are the same 
distance from the surface of the sphere, i t  follows that the variation in the induced 
velocity around the cross-section is of the same order as that  at the free end. 
Stokeslets a distance q or greater from the surface (1x1 > A + q )  will induce images a 
distance q or greater from the surface in the interior of the sphere. From the defini- 
tion of a Stokeslet, it follows that the variation in ‘the velocity induced by these 
singularities is of order (a/q)2. 

Finally, we must show that the velocity due to  the rotation of the cross-section is 
negligible. The angular velocity due to the wave motion is linearly proportional to the 
curvature and the wave speed. Therefore the velocity on the surface due to the rotation 
of the cross-section is O(Ka) in comparison with the translational velocity. In  addition, 
we need to consider the effect of the rotlet strength on the moment balance for the 
organism. For the axes perpendicular to the direction of wave propagation, the contri- 
bution of the rotlets to  the moment balance is O(a2/L2). For two-dimensional waves the 
moment about the axis parallel to the wave direction is identically zero, while for 
three-dimensional waves it is O(a2/A2).  This is negligible, as we have assumed a < A .  

4. Integration of singularity distributions 
Having demonstrated the validity of slender-body theory and the image system 

in the solution of this problem, we now turn our attention to  finding the induced 
velocity, which is obtained by integrating the singularities. Before proceeding with the 
integration, we must specify the shape of the flagellum, as i t  determines the path of the 
integration. 

Choose a co-ordinate system with the origin a t  the centre of the sphere and the 
X axis parallel to a line through the nodal points of the travelling wave. (See figure 1.) 
We call this the body frame. At a particular instant, the centre-line of the flagellum 
forms a curve in space specified by X(s), where s is the arc length measured from the 
point where the flagellum meets the sphere. The unit tangent vector T(s) is defined by 

T(s) = (dX /ds ,  dY /ds ,  dZ/ds). (16) 

The unit normal and binormal vectors are defined by 

N(s)=x/lzl ,  d T  dT B ( s ) = T x N .  

It is convenient to definite the rotation tensor 0, as 
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s = S,: 1 I + ez X* cosz (x.\- + $ 1  14 d x .  j , ( s )  = a sin[k x(s) + 1 

T ( , s ) = ( I . a X  c o s [ L . y ( s )  + $ ] . O ) / ( l  + a 2 k 2  c o s * [ k . ~ ( . s ) + $ ] ) ~  

N(v) = iaX coslX Y ( , \ )  + $ ] , - I  .O) / (  1 + a2 k 2  cos2 [X x(s) + 
Bls) = (0.0.- I )  

. X ~ . S ) =  I ( S )  + A T , ( O ) .  Y ( ~ ) = , , ( . S ) + A T ~ ( O ) - - ’  (0) .  Z ( s ) = O  

FIGURE 1. Specification of the sinusoidal wave form showing the co-ordinate system attached to 
the body. The arrows show the direction of the tangential and normal vectors. 

With these preliminaries completed, we now consider the integration of the singu- 
larity distributions. We recall from $ 3  that the induced velocity is given by the 
integral of the Stokeslets and dipoles along the flagellum; see (12). The integral 
obtained does not include the velocity induced by the image singularities inside the 
sphere. To include these terms, we replace the free-space Green’s function sjk in (12) 
with the Green’s function Gjk for the flow external to a sphere defined by (3).  With this 
substitution, the expression for the velocity induced by the singularities along the 
flagellum and their images in the sphere is 

where the integration extends along the centre-line of the flagellum and all co-ordinates 
are referred to the body frame. 

To evaluate the integral, the flagellum is split into N intervals of length 26s, which 
are assumed to be straight and along which f and hence d are taken as constant. With 
these assumptions, the integral (19) may be written as 

where 

We now divide the Green’s function Gik into two parts: 

Here sjk is the Stokeslet singularity defined by (1) and sj., represents the images of the 
Stokeslet in the sphere. Sj., is singular inside the sphere, but regular along the flagellum. 
This makes it possible to evaluate the integral of Xi., along the flagellum by a simple 
numerical quadrature. In  practice, a simple two- or three-point quadrature is sufficient 
for each segment. Thus we define 
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with the stipulation that the integral is to be evaluated numerically. Substituting this 
result in (20) gives the induced velocity in the form 

N 

n= 1 
+ x H j k ( X ,  X ( % ) ) f k ( S , ) .  (24) 

The remaining integrals are recognized as those appearing in ( I  2). To evaluate them, 
i t  is necessary only to convert from the local co-ordinate system used in (12) to the 
general co-ordinates defined in the body frame. The local co-ordinate system for each 
interval has its origin a t  the point X(S,). The SL axis is parallel to T(s,J and the YL 
and Z L  axes are parallel to N(s,) and B(8,) respectively. In general co-ordinates, the 
local point xL is expressed by 

Xj” = Ojk(Sn) [Xk - Xk(sn ) ]*  ( 2 5 )  

Using this definition and the rule for transforming tensors, we can write (1 3) in general 
co-ordinates; hence the velocity induced by the singularities in the nth interval is 

uj(x; 8%) = K j k ( X 7  X(S,))fk(8,), 

K j k ( X ,  X(s,)) = @,j(S,) @,k(5,) [ K d x  - x )Ix~=(-sk,:o,o,. 
(26) 

(27) 
L L L Xfr=(89n 0 0) where 

Substituting this result into (24)) we find that the velocity induced by the distributed 
singularities is 

N 

n=l  
~j(x) = 2 {[Xjk(x, X ( 9 n ) )  + Hjk(x, X(s,))Ifk(~n)>* (28) 

5. Kinematics of flagellar motions 
We now turn our attention to specification of the shape of the flagellum as a function 

of time and the determination of the velocity of points along the flagellum. I n  the 
previous section, the shape of the flagellum a t  a particular instant was specified by 
X(s). We generalize this representation to  consider a function X(s , t ) ,  where a is as 
defined before and X(s, t )  is referred to the body frame. For an inextensible flagellum, 
the velocity with respect to the body frame of a point a t  the position 8 is 

u(s, t )  = ax($, t ) / a t .  (29) 

This expression is valid for any type of motion; however, we are primarily interested 
in transverse waves propagating along the flagellum. I n  a frame moving with the wave, 
the shape of the flagellum is specified by Xw(a - c t ) ,  where c is the arcwise wave speed. 
The wave is assumed to have arcwise wavelength A and linear wavelength A ,  hence 

Xw(s + A) r; XW(s) + A ,  Yw(a + A) = Yw(a), Zw(s + A) = Zw(e). (30) 

I n  addition, we note that the wave frame translates, but does not rotate with respect 
to the body frame. Thus the tangential and normal vectors are identical in the two 
frames and may be written as T(e - c t ) ,  N(s - c t )  and B(s - c t ) .  

The velocity of a point with respect to the wave frame is 

W(S, t )  = aXw(s - ct ) /a t  = - c a X W / &  = - c T ( ~  - ct) .  (31) 
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To find the velocity with respect to the body frame, we must find the translational 
velocity of the wave frame with respect to the body frame. To do this, we calculate the 
velocity of the end point s = 0 in each frame. 

In  the body frame, the point s = 0 is a t  the position ATIS=,. This follows from the 
condition that the flagellum is attached to the sphere radially. The velocity of this 
point in the body frame is - Ac[dT/ds],,,. We note that the point is on the surface of 
the sphere, from which it follows that the sphere must rotate with respect to the body 
frame with angular velocity - Qfr BJs-O, where QH is defined by 

Using this definition, the velocity of the point s = 0 in the body frame is - AQHNl,,,. 
The velocity of the point in the wave frame is simply -cTl,,,. Therefore the wave 
frame translates with respect to the body frame with velocity 

Q, = c IdT/dsI,,,. (32) 

[cT - AQH N],=,. (33) 

We note that the average value of this expression is the linear wave speed V ,  defined 
as the speed of the wave in a frame in which the particles have no forward displacement. 
This wave speed is related to the arcwise wave speed c by the equation 

See Lighthill (1975, pp. 53-54). 

relative to the body frame: 

C I A =  V/h .  (34) 

Finally, we combine (31) and (33) to obtain the velocity of a point on the flagellum 

u ( s , ~ )  = [cT-AQ,N],,,-cT(s-c~). (35) 

6. Boundary conditions 
The velocities calculated in the section on flagellar kinematics are expressed relative 

to the body frame. To find the velocity of each point relative to the fluid, we must 
consider the translation and rotation of this frame with respect to the fluid a t  rest a t  
infinity. 

We assume that the body frame translates and rotates relative to the fluid at rest with 
velocity U, and angular velocity a,. Therefore the velocity of a point on the flagellum 
relative to the fluid is 

UX = U o + Q O ~ X + [ ~ T - A Q ~ N ] , = , - ~ T .  (36) 

This is the velocity which must be matched by the velocity induced by the flow 
singularities. These include the Stokeslets and dipoles along the flagellum, together 
with their images in the sphere. To these we must now add the singularities needed to 
match the velocity of translation and rotation on the surface of the sphere. 

The origin of the body frame is fixed at the centre of the sphere, hence the velocity of 
the sphere is U,. The sphere rotates with angular velocity - QHBls=,  relative to the 
body frame, hence it has angular velocity Q, - QH B Is=, relative to the fluid a t  rest. 
These velocities are matched by a combination of a Stokeslet, dipole and rotlet. The 
velocity field generated by these singularities is 

(See Happel & Brenner 1965, pp. 163, 169.) 
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The boundary condition on the surface of the organism is that the velocity of each 
point on the surface must equal the velocity of the fluid a t  that point. This condition 
has been satisfied implicitly on the surface of the sphere by our choice of singularities. 
We have calculated the velocity of each point on the flagellum and the velocity induced 
by the singularities. Thus the boundary condition on the surface of the flagellum is 
expressed by 

N 

n = l  
uRj = uHj + 2 [ K j k ( X ,  x(sn)) + x(sn) ) l fk ( sn) ,  ( 38 )  

where u, is given by (36 )  and uH is given by ( 3 7 ) .  This expression has 3N + 6 unknowns: 
fk(sn), U ,  and Q,. We evaluate (38)  a t  the N points X(s,)  to obtain 3N equations. The 
six additional equations are obtained from the force and moment balances. 

7. Force and moment balances 
The organism is self-propelled and is not influenced by any external forces. Therefore 

we require that the total force and moment on the organism equal zero. As a Stokeslet 
corresponds to a point force, the condition of zero force is equivalent to the total 
Stokeslet strength being zero. To find the total Stokeslet strength, we must consider 
the Stokeslets along the flagellum, their images inside the sphere and the Stokeslet due 
to translation of the sphere. The Stokeslet due to translation of the sphere has strength 
67r,uAU,. To find the strength of the images inside the sphere, we must consider the 
radial and transverse components of the Stokeslets along the flagellum. 

Let F be a Stokeslet along the flagellum. We write Fk in the form 

Fk = (FIX&) (39) 

where the first bracket contains the radial component and the second the transverse 
component with respect to the sphere. 

Equations ( 7 )  and (8) give the strength of the radial image and transverse image 
respectively. Adding these image strengths, we find that the total force on the organism 
due to a Stokeslet and its image is 

where 

Summing over all Stokeslets on the flagellum and adding the contribution due to the 
translation of the sphere, the force balance becomes 

For the moment balance, we need consider only the transverse component of F, as 
the radial component has zero moment about the centre of the sphere. The strength of 
the image rotlet for the transverse component is given by (8). The moment about the 
centre of the sphere due to a Stokeslet F a t  the point X and its images is 

e i j k X j  Fk( 1 - A3/ I XI 3 ) .  (43) 
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The moment about the origin due to the rotation of the sphere is 

87rpA3(QO- QBB1,=,). 

Therefore the moment balance gives 

(44) 

The 3N + 6 system of equations in 3N + 6 unknowns is now complete. It consists of 
the boundary condition (38) together with the force and moment balances (42) and 
(45). The 3N + 6 unknowns are f(sn),  U ,  and S2,. 

8. Solution of equations 

write (38) in a different form by making the following definitions: 
To solve the 3hT+ 6 system of equations we adopt an iteration procedure. First, we 

Qjk(am, 8,) = K j k ( X ( B m ) ,  X ( s n ) )  f Hjk(X(%w) t  X ( S n ) ) ,  (46) 

Thus (38)  becomes 
N 

n- 1 
uRj(Sm) = uHj(sm) + 4 k ( s m ) f k ( s m )  + c [ f k ( s n )  Afk(sm)l  & j d S m ,  9n)* (48) 

We then multiply by the inverse of qk and rearrange the terms to obtain 

N 

n = l  
f i ( sm)  = pG'(sm) ( ~ ~ ~ j ( ~ m )  - u H j ( s m )  - x [ fk (gn)  -fk(6m)1 ~ j k ( a m t  ' n ) )  * (49) 

We use this expression to define the iteration. The right-hand side of the equation 
depends on the previous values off and U, and a,, while the left-hand side defines the 
next iterated value for f .  The advantage of the iteration method is that  it does hot 
require the inversion of a 3N x 3N matrix. To find U, and S2, a t  each iteration, we might 
define an iterate similar to that for f ,  but this is not the best way to proceed. Alterna- 
tively, we might make use of the linearity of the equations and find an iterative solution 
for each component of U, and S2, independently. This technique leads to great simplifi- 
cation when attempting a solution through the use of perturbation methods but is 
inefiicient for numerical solutions. To find the complete solution as efficiently as 
possible, we use (49) to eliminate f from (42) and (45) at each iteration. The six equations 
for U, and S2, are then solved simultaneously. 

The advantage of this method is that the complete solution for f and all components 
of U, and 51, is obtained in the same step. In  addition, the iteration converges more 
rapidly than if U, and Q, are iterated in the same manner as f .  Finally, the solution of 
one 6 x 6 system and N 3 x 3 systems requires far less computer time and storage than 
the direct inversion of the (3N + 6)-order matrix. 

The solution obtained for the system of equations is the solution a t  only one instant 
of time. To find the average value for U, and a,, we must find the solution of the 
equations at  several points in the cycle. We define the average swimming speed as the 
displacement of the sphere in a cycle divided by the period of the cycle. This is not the 
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simple average of U, because it is measured in a frame which rotates with angular 
velocity a,. We define the rotation tensor Qik such that 

x R j  = @ j k ( t ) X k ,  (50) 

where X is a vector referred to the body frame and X, is referred to  the frame at rest 
with respect to  the fluid. We cannot write down an explicit expression for Oik, but we 
have the following relationship from the definition of a,: 

d @ ) j k ( W  = Eklm @j, from, (51) 

with initial condition a,, = Sik at t = 0. With this definition, we have as the average 
swimming speed 

To evaluate this expression, we solve the equations at M points in the cycle and fit an 
M-term Fourier series for Uo(t) and n,(t). The Fourier series give continuous functions 
of time for U,(t) and Q,(t). These functions are used to  integrate (51) and (52) to find the 
average swimming speed. The integral of (52) over sub-intervals gives the trajectory 
of the organism. 

I n  addition to the swimming speed, we are interested in the average power con- 
sumption of the organism. We can write the instantaneous power consumption as the 
integral of F . U,, over the surface of the organism, where F is the force per unit area 
and U, is the velocity relative to the rest frame. This calculation requires the surface 
distribution of force on the sphere. To overcome this difficulty, we use the fact that the 
total force and moment on the organism are zero. This allows us to  calculate the power 
with U referred to  any frame. Accordingly, we choose the frame in which the sphere 
has zero velocity and angular velocity. The integral is then restricted to  the flagellum, 
and we use the force per unit length f. Thus the instantaneous power is 

= 7 IOr P ( t )  dt, (55) 

and as before, we evaluate P( t )  at M points in the cycle and evaluate the integral 
numerically. 

9. Results 
We have developed a method for analysing the locomotion of micro-organisms by 

flagellar motions. I n  applying this method, we wish to examine a wide variety of 
organisms to determine the effects of changes in the various parameters, and how 
biological considerations affect their values. It is impossible to  examine all combina- 
tions of wave form and body dimensions, hence we must restrict our attention to a 
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FIGURE 2.  Power consumption in the non-dimensional form (56) as a function of number of 
wavelengths N,, for a slender organism without a cell body. Curves are for different amplitudes ak, 
with a / L  = 0.01. 

more limited class. I n  this paper, we consider organisms employing planar sinusoidal 
waves. We indicate in each circumstance whether the result holds for more general 
planar wave forms or is unique to this wave form. We note that many organisms 
actually employ sinusoidal waves, particularly the spermatozoa of several species. 

The organisms we consider have cell body radius A ,  flagellar radius a and flagellar 
length L. The sinusoidal wave has amplitude a, linear wavelength h and linear wave 
speed V .  The wavenumber Ic is equal to 27rIh. The various position vectors are shown 
in figure 1. We specify the body by the non-dimensional parameters a/L and A I L  and 
the wave by the non-dimensional parameters ak and N,, where N,, the number 
of waves on the flagellum, equals LIR. The average swimming speed is non- 
dimensionalized as U l V ,  where = 101. I n  considering the power consumption, we 
use the following non-dimensional form, sometimes called the inverse efficiency: 

7-l = P/[ (6npA + KT L) U2], (56) 

with KT = 2np/ln (2Lla). (57) 

The expression in the denominator of (56) is the approximate power required to pull 
the organism through the water a t  its average swimming speed. 
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FIGURE 3. Power consumption (50) as a function of number of wavelengths N, for an organism 
with a large cell body (radius A I L  = 0.1). Curves are for different amplitudes ak, with a/L = 0.0 1. 

I n  examining the effects of the parameters on the swimming speed and power con- 
sumption, we are interested in determining the optimal swimming motion. This is not 
necessarily the motion which produces the fastest swimming speed, but rather that 
which requires the lowest power consumption at a given swimming speed. 

It is difficult to  show variation with respect to four parameters, but a logical way to 
proceed is to consider first the wave parameters and then the body parameters. 
Accordingly we consider the power consumption r,-l as a function of the number of 
waves N,. Figure 2 shows this function for a headless organism a t  three different wave 
amplitudes ak. At small values of N,, the organism has a very large power consump- 
tion. This is due to the fact that the entire flagellum forms a fraction of the wave, 
causing excessive yawing motion and little forward progress. This effect decreases as 
the optimum value N,, = 1 is approached. The slowly increasing behaviour as N,, 
increases from I is due to  interference between neighbouring crests as they are brought 
closer together. This explains why the curve for ak = 2 rises more quickly than the 
others. For smaller values of a / L  this effect is less pronounced, as the interaction 
radius is proportionately smaller. Figure 3 shows the behaviour of 7-1 for the same 
wave forms but with the flagellum attached to a large cell body. The behaviour is 
similar, with the optimum a t  N,, = 1 for ak = 0.5 and 1 and a t  NA = 0.8 for ak = 2. 
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FIUURE 4. Power consumption (56) as a function of amplitude uk. Curves are for organism without 

a cell body and for two different head radii A .  Single wavelength, NA = 1 (a/L = 0.01). 

The interaction effect is more extreme because the flagellum must generate extra 
thrust to overcome the drag of the cell body. The large number of inflexions in both 
figures is due to ‘resonances’ which occur a t  various values of NA where there is less 
yawing motion. 

If we compare these results with those for real organisms we find reasonable agree- 
ment. For headless organisms, we find that nematodes and other swimming worms 
have NA in the range 1-2. Among organisms with a cell body, we find that a number, 
including the sea-urchin spermatozoa studied by Gray & Hancock (1955), have NA 
in the range 1-1.5. On the other hand, there are numerous organisms employing several 
waves along their flagella. This discrepancy is due to two factors. The first, which has 
already been mentioned, is that smaller values of a / L  ( < 0.001) reduce the interaction 
effect and produce virtually no increase in 7-l for large values of NA. The second factor 
is the use of non-sinusoidal waves, such as those shown by Brokaw (1965), which ar0 
of large amplitude but keep sufficient space between neighbouring waves to minimize 
interaction effects. Finally, we note that virtually no organisms have NA less than 0.75. 

As the value NA = 1 is the optimum or very close to the optimum in each case, we 
consider only this value in examining the effect of the other parameters. Figure 4 shows 
the behaviour of 7-l as a function of the amplitude ak for three different organisms. 
The optimum amplitude is in the range ak = 1-1-25. The nature of the propulsive wave 
is such that the segments of the flagellum nearly parallel to the wave direction produce 
drag, while those inclined a t  a large angle to the wave direction produce the thrust. 
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F I G U R E  5.  Average swimming speed as a fimction of amplitude ak. Curves are for an organism 
withoiit a cell body and for three different head radii A .  Single wavelength, NA = 1 ( a / L  = 0.01). 

This explains the high power consumption a t  low amplitudes, where the flagellum does 
not depart far from the wave direction. The increase in 7-l for large ak is due to the 
interference effect as the steepening wave brings the crests closer together. The 
optimum for an organism with a large cell body is much sharper, because the flagellum 
must generate extra thrust to overcome the drag of the cell body. 

Figure 5 shows the behaviour of 01 V as a function of ak. For the headless organism 
and for A1 L = 0.05, the swimming speed rises monotonically with increasing ampli- 
tude, levelling off as ak approaches 3. This levelling-off is due to the interference 
between segments of the flagellum as the increasing amplitude brings them closer 
together. For the two organisms with large cell bodies, the curves level off a t  smaller 
values of ak. I n  the case AIL = 0.20, the swimming speed decreases significantly a t  
large amplitudes. The behaviour in these cases is due partly to the interference effect 
mentioned above, but more important, to  the interaction of the flagellum and the cell 
body. When the wave amplitude and cell body are large enough, the flagellum curves 
back in the vicinity of the cell body, causing excess drag and reducing the swimming 
speed. This combination is very inefficient. 

Jn comparing the predicted optimum ak with the values found among actual 
organisms, we must restrict our attention to those organisms which employ waves 
nearly sinusoidal in form. This is because the optimum is critically dependent on such 
factors as the angle the flagellum makes with the wave direction and the separation 
between waves. These factors are determined as much by the precise form of the wave 
as by its amplitude and wavelength. With these restrictions, we find good agreement 
with actual organisms. A wide range of organisms employ waves with ak in the range 
1.0-1.5. Typical values for swimming worms such as nematodes are in the range 
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FIQURE 6. Power consumption in the non-dimensional form (56) as a function of flagellar radius 5. 

Curves are for an organism without a cell body and for two different head radii A .  (Wave form: 
NA = 1, ak = 1.) 
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FIGURE 7. Average swimming speed as a function of flagellar radius a. Curves are for an organism 
without a cell body and for two different head radii A .  (Wave form: NA = 1, uk = 1.) 
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ak = 0.75-1.0, while the sea-urchin spermatozoa studied by Gray & Hancock (1955) 
have ak between 0.8 and 1.2. 

From consideration of the results above, we conclude that the optimum sinusoidal 
wave has NA in the range 0-8-1 and ak in the range 1.0-1.25. The wave with NA = 1 ,  
ak = 1 is very close to  the optimum for an organism with or without a cell body, hence 
we shall use these values in considering the effects of variation of the other parameters. 

Figure 6 shows the power consumption as a function of alL. It increases slowly with 
increasing a/L for a headless organism and varies negligibly for organisms with cell 
bodies. The mild behaviour in all three cases is due to the logarithmic dependence on 
a/L observed in slender-body theory. Figure 7 shows the dependence of the swimming 
speed on alL. Once again, we observe negligible variation over the range of values 
considered. 

As no optimum flagellar radius is predicted by the theory, we cannot make a com- 
parison with actual organisms. We simply note that all observed values of a/L fall 
in the range considered here. 

Finally, we examine the dependence of power consumption and swimming speed on 
LIA. I n  considering the power consumption, we pose the following question: given an 
organism with specified a and A ,  what is the optimum value of LZ This is the correct 
way to pose this question, because the head radius and flagellar radius are often con- 
strained by biological considerations, while the flagellar length is free to  vary over a 
wide range. To answer this question, we consider a fixed value of a/A and consider the 
behaviour of the power consumption as a function LIA. Because L varies in this case, 
we consider the power consumption in the non-dimensional form 

This expression is such that i t  does not give credit for overcoming the drag of the 
flagellum, and its minimum will be the most advantageous for the organism. Figure 8 
shows the dependence of yo' on LIA. We see that the optimum is at LIA = 25, and 
that yo1 is very close to the optimum over the range LIA = 20-40. For values of LIA 
less than the optimum the flagellum is too short, and the wave motion is inefficient 
owing to the interference with the cell body. For extremely long flagella, more power is 
required to overcome the drag of the flagellum than is required for the cell body. 
Figure 9 shows the swimming speed as i t  varies with respect to LIA. We see a sharp 
rise in speed up to LIA = 25, and then a rapid levelling-off. This again demonstrates 
that  past a certain point the extra flagellar length does not benefit the organism. 

We find that the optimum flagellar length predicted by the theory agrees quite well 
with the flagellar length of most spermatozoa. On the other hand, protozoa typically 
have a much shorter flagellum with LIA = 5. This discrepancy is due to the fact that  
the organisms do not use sinusoidal waves. If non-sinusoidal planar waves or three- 
dimensional waves are used, the interaction of the flagellum and cell body may be 
quite different, producing a different optimum value for LIA. 

Finally, we consider a detailed solution for a single set of parameters. We choose 
NA = 1, ak = 1, a/L = 0.01 and AIL = 0.05. This set of parameters is a t  or near the 
optimum for each parameter and is fairly typical of a number of spermatozoa. I n  
figure 10 (a) ,  the wave form is shown a t  one instant in its cycle. Figure 10 ( 6 )  shows the 
distribution of thrust per unit length along the flagellum. We clearly see that those 
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FIGURE 8. Power consumption in the non-dimensiona.1 form (58)  as a function of flagellar length L. 
Flagellar radius equal to 0.1 of head radius (a/A = 0.1). (Wave form: NA = 1. ak = 1.) 
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FIGURE 9. Average swimming speed as a function of flagellar length L.  Flagellar radius 
equal to 0.1 of head radius (a/A = 0.1). (Wave form: iV, = 1 ,  ak = 1.) 
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FIGURE 10. (a) Typical wave form at one instant of time. ( b )  Thrust per unit length for wave 
shown; thrust is positive. (c )  Tangential force per unit length for wave shown. (d) Normal form 
per unit length for wave shown. 

segments of the flagellum nearly parallel to the wave direction are producing drag, 
while those inclined at  large angles to the wave direction are producing the thrust. 

It is instructive to resolve the force per unit length into its tangential and normal 
components. These are shown in figures 1O(c) and (d) respectively. We note that the 
tangential force contributes exclusively to the drag, while the normal force is pro- 
ducing the thrust. Thus i t  is to the organism’s advantage to increase the normal force 
and decrease the tangential force. In order to generate thrust, the normal force 
coefficient (the ratio of force per unit length to velocity) must be significantly greater 
than the tangential force coefficient. In figures lO(c) and ( d )  we see that the maximum 
value of & is approximately twice the maximum of Er. This is as predicted by the 
asymptotic behaviour of the force coefficients in (15). 

Figure 11 (a) shows the flow field about the organism at  the instant of time corre- 
sponding to the wave shown in figure 10. The small lines are streaklines, i.e. they are 
parallel to the velocity at each point and their length is proportional to the magnitude 
of the velocity. The lines are drawn from points on a rectangular grid, and the length is 
normalized such that a line of length equal to the grid spacing represents a velocity 
equal to V .  

The streaklines clearly demonstrate the dominance of the normal forces. On the long 
straight segments of the flagellum at a large angle to the wave direction, the fluid is 
pushed to the side and slightly to the rear at a speed approximately equal to V .  On the 
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FIGURE i 1. (a) Streaklines about the organism a t  one instant during the cycle of the wave. Lines 
are partillel to the velocity a t  each point and their length is proportional to the magnitude of 
velocity. A line of length equal t o  the grid spacing represents a velocity equal to the linear wave 
speed V .  The wave is travelling to the right. ( b )  Streaklines about the organism one quarter-cycle 
later. 

segments nearly parallel to the wave direction, where the tangential force dominates, 
the fluid moves forwards along the tangent to  the flagellum, but at a much smaller 
velocity. In  the overall picture, we see that the average flow in the wave direction and 
hence the swimming speed in the opposite direction are very small. 

Figure 11 ( b )  shows the pattern of streaklines one quarter-cycle later. At this instant, 
we see the same dominance of the normal forces, but the overall picture is somewhat 
different. The average flow in the wave direction is much larger, and the swimming 
speed is proportionately higher. 
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(b  ) 
FIGURE 12. (a) Trajectory of an organism during one cycle of the wave. (b )  Trajectory of ends of 
the flagellum during one cycle of the wave. Arrows indicate swimming diroction. Note the apparent 
increase in amplitude a t  the trailing end. 

The trajectory of the organism during one cycle is shown in figure 1 2 ( a ) .  The 
positions of the cell body and flagellum are shown a t  intervals of one-sixth of a cycle. 
Figure 12 ( b )  shows the trajectory of the end points of the flagellum during the cycle. 
This figure confirms the non-uniformity in the swimming speed over the cycle inferred 
from the flow patterns in figure 1 1 .  We note that the actual distance travelled is much 
greater than the distance covered in the swimming direction. An interesting feature of 
the motion is that  the constant amplitude wave appears to have increasing amplitude 
owing to  the yawing motion during the cycle. 

We note that for any symmetric wave the organism has zero net rotation over a 
cycle, and its position a t  the end of each cycle lies on a line which specifies the swimming 
direction. The trajectory of the end points of the flagellum is symmetric about a line 
parallel to the swimming direction. 

10. Effectiveness of resistance coefficients 
I n  this section, we consider the use of resistance coefficients to model the swimming 

of micro-organisms. The initial application of resistance coefficients was by Gray & 
Hancock (1955), who used coefficients of the form 

They reasoned that the value of q was not crucial as the coefficients had only logarithmic 
dependence on q .  They let q equal the wavelength and found that their calculations 
were very close to  observed swimming speeds. Numerous other authors have used 
these coefficients to calculate the swimming speed and power consumption for a 
variety of organisms. 

Lighthill (1975, p. 52) examined the concept of resistance coefficients from the 
standpoint of slender-body theory and concluded that q should take a value of 
approximately one-tenth of the wavelength. Lighthill (1 976) calculated an exact 
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FIGURE 13. Average swimming speed as a function of amplitude ak for two different organisms, 
showing difference between oxact calculation and resistance coefficients. Single wavelength, 
NA = 1. Organism dimensions: a/L = 0.01; AIL = 0.05, 0.20. -, exact; ---, Gray-Hancock; 
--- , Lighthill. 

solution for. an infinite helical wave form. He compared this solution to that obtained 
using resistance coefficients and concluded that the smaller value of q was appropriate, 
but that the motion must be considered in two parts. He found that for zero-thrust 
motion K N  was a good approximation, but that K ,  should be of the form 

For the extra thrust generated, he proposed a separate coefficient for thrust per unit 
length. This approach worked quite well for infinite spirals but is rather difficult to 
apply for finite planar wave forms. 

We now compare the results calcuIated in this paper with those obtained using 
resistance coefficients. For the calculations using Lighthill's coefficients, only the zero- 
thrust values are used. Figure 13 shows the swimming speed as a function of ak for two 
values of AIL.  The values A I L  = 0.05 and 0.20 are typical of spermatozoa and 
protozoa respectively. For the case A I L  = 0.05, we observe that the Gray-Hancock 
result is very close to the result calculated in this paper. This is to be expected, as the 
Gray-Hancock coefficients have proved accurate when compared with observed 
swimming speeds. The result using Lighthill's coefficients is not quite as accurate. This 
is because they were optimized for an infinite zero-thrust spiral. Thus for organisms 
with relatively small cell bodies, we find that the Gray-Hancock coefficients provide 
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FIQURE 14. Power consumption in the non-dimensional form (56) as a function of amplitude ak 
for two organisms with different head radii, showing difference between exact calculation and 
resistance coefficients. Single wavelength, NA = 1. Organism dimensions: a/L = 0.01 ; A / L  = 0.05, 
0.20. -, exact; ---, Gray-Hancock; ---, Lighthill. 

a good estimate of the swimming speed: accurate to  within 10 yo over a wide range of 
the parameters. 

For organisms with large cell bodies (AIL 2 0.20), corresponding to  protozoa, we 
see that neither resistance-coefficient model is very accurate. I n  general, the error in 
the swimming speed calculated by resistance coefficients for organisms with large cell 
bodies is approximately 20 %. 

The success of resistance coefficients in predicting the swimming speed for a large 
number of organisms has given some authors confidence in their use for calculating 
power consumption. This confidence is not justified, as can be seen in figure 14. I n  this 
figure, the power consumption is shown as a function of ak for AIL = 0.05 and 0.2. For 
the smaller cell body, both sets of resistance coefficients give values much less than the 
actual value. I n  this case, their estimates are approximately the same, but this is not 
true in general. The error in Lighthill’s predictions is due to the overestimate in 
swimming speed, which causes the power to be underestimated. This is confirmed by 
the result for the larger cell body. I n  each case, the Lighthill model underestimates the 
power by approximately 30 yo. The error in the Gray-Hancock estimate is due to two 
factors. For small cell bodies, the swimming speed is accurate, but the coefficients 
underestimate the magnitude of the forces, and hence the power consumption, by 
approximately 30 yo. For Iarge cell bodies, the swimming speed is underestimated, 
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which causes the power to be overestimaked. This is offset somewhat by the under- 
estimate of the forces, but still leads to an overestimate of approximately 25 %. For 
other parameter combinations not shown here, the error with either model reaches 

I n  summary, the relative error in the power consumption predicted by resistance 
coefficients varies from 25 to 50 yo. The Lighthill Coefficients consistently under- 
estimate the power, while the Gray-Hancock coefficients underestimate the power for 
small cell bodies and overestimate it for large cell bodies. 

From the results above, we conclude that resistance coefficients are unsatisfactory 
for a complete description of the swimming of micro-organisms. Their values can be 
optimized for one quantity such as swimming speed, but they cannot give an accurate 
estimate for power consumption over any range of the parameters. Thus we feel that  
it is not worthwhile attempting to devise ever ‘improved’ coefficients when the 
problem can be solved in a straightforward manner as described here. 

50 %. 

1 1. Conclusions 
In  this paper, we have presented a method of solving the hydrodynamic equations 

arising from the swimming motion of a micro-organism with a spherical cell body 
propelled by a general three-dimensional wave propagating down a long slender 
flagellum. We have presented results from the numerical solution of the equations for 
organisms using planar sinusoidal waves, with the object of finding the optimal 
swimming motion. Resistance-coefficient models have been examined and have proved 
useful for predicting the swimming speed but unsuitable for providing accurate assess- 
ments of the power consumption. 

A detailed examination of the results shows the importance of considering the effect 
on the flow of the entire organism. Models which neglect the presence of the cell body, 
except in its contribution to the force balance, cannot account for the interaction of the 
cell body and flagellum, which has an important bearing on the swimming speed and 
power consumption. 

In  examining the swimming of micro-organisms, we feel that  there are two distinct 
approaches whose aims are complementary. The first, the one used here, is to examine 
a wide range of all the parameters with the object of discovering optimal swimming 
motions and their applicability to  actual organisms. The second approach is to con- 
sider a single organism and examine the interdependence of the propulsive mechanism 
and the various biochemical and environmental factors which affect the organism. 
Although we have not followed this approach in this paper, we wish to emphasize the 
usefulness of our method of solution in this approach. In  particular, the more accurate 
power estimates are helpful in comparisons with the power available from biochemical 
sources. 

Finally, we emphasize that it is not necessary to restrict the calculations to a sinu- 
soidal wave or to any regular wave form. A major benefit of the numerical solution is 
that any type of motion may be considered. This includes any form of travelling wave, 
as well as irregular motions which vary along the flagellum and during the cycle. In  a 
future publication, results will be presented for a variety of three-dimensional motions. 
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